SnCl(2) reduces voltage-activated calcium channel currents of dorsal root ganglion neurons of rats.

نویسندگان

  • Anke Tomaszewski
  • Dietrich Büsselberg
چکیده

Stannous dichloride (SnCl(2)) occurs in the environment where it has been especially enriched in aquatic ecosystems. Furthermore, it is used in food manufacturing (e.g. for stabilizing soft drinks or as an anti-corrosive substance) and in nuclear medicine where it is employed as a reducing agent for technecium-99m (99mTc) and therefore is applied intravenously to human beings. SnCl(2) is known to have toxic effects on the nervous system which can be related to alterations of intracellular calcium homeostasis ([Ca(2+)](i)). In this study the whole cell patch clamp technique is used on dorsal root ganglion neurons of 3-week-old "Wistar" rats to evaluate the effects of SnCl(2) on voltage-activated calcium channel currents (I(Ca(V))). I(Ca(V)) were reduced concentration-dependently by SnCl(2) (1-50microM). 1microM SnCl(2) reduced I(Ca(V)) by 8.1+/-4.5% (peak current) and 19.2+/-8.9% (sustained current), whereas 50microM inhibited I(Ca(V)) by 50.6+/-4.3% (peak current) and 55.6+/-11.3% (sustained current). Sustained currents were slightly but not significantly more reduced than peak currents. The effect appeared not to be reversible. The threshold concentration was below 1microM. The current-voltage relation did not shift which is an indication that different calcium channel subtypes were equally affected. There was a slight but not significant shift of the activation/inactivation curves towards the depolarizing direction. We conclude that voltage-gated calcium channels are affected by Sn(2+) similarly to other divalent metal cations (e.g. Pb(2+) or Zn(2+)). The reduction of I(Ca(V)) could be related to the neurotoxic effects of SnCl(2).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat

Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...

متن کامل

Cisplatin modulates voltage gated channel currents of dorsal root ganglion neurons of rats.

The anticancer drug cis-diammindichloroplatin (CDDP, cisplatin) causes severe side effects like peripheral sensitive neuropathy. The toxicity of CDDP has been linked to changes in intracellular calcium homeostasis ([Ca2+]i). Voltage activated calcium channel currents (ICa(V)) are important for the regulation of [Ca2+]i; therefore, this study was designed to examine the effect of CDDP on ICa(V) ...

متن کامل

Voltage gated calcium channel currents of rat dorsal root ganglion (DRG) cells are blocked by Al3+.

The effects of the trivalent cation aluminum (Al3+) on voltage activated calcium channel currents were examined. Al3+ blocks sustained and transient components of voltage activated calcium channel currents of cultured rat dorsal root ganglion (DRG) cells. Currents were elicited by voltage jumps from -80 to 0 mV. The channel block was use dependent. Steady state blockade occurred after 1 to 5 mi...

متن کامل

Dynorphin A selectively reduces a large transient (N-type) calcium current of mouse dorsal root ganglion neurons in cell culture.

Opioid receptors are differentially coupled to ion channels. Mu- and delta-opioid receptors are coupled to calcium- and/or voltage-dependent potassium channels and kappa-opioid receptors are coupled to voltage-dependent calcium channels. Using the single-electrode voltage-clamp technique, we investigated the effect of the kappa-opioid receptor agonist dynorphin A on somatic calcium currents of ...

متن کامل

Effects of (+/-)-kavain on voltage-activated inward currents of dorsal root ganglion cells from neonatal rats.

Kava pyrones extracted from pepper Piper methysticum are pharmacologically active compounds. Since kava pyrones exhibit anticonvulsive, analgesic and centrally muscle relaxing properties, the influence of a synthetic kava pyrone, (+/-)-kavain, on voltage-dependent ion channel currents was studied. Effects of (+/-)-kavain on voltage-activated inward currents were analysed in cultured dorsal root...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurotoxicology

دوره 29 6  شماره 

صفحات  -

تاریخ انتشار 2008